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Classic Data Assimilation: For NWP we need to
improve observations, analysis scheme and model

(BSERVATIONS 6 hr forecast ]
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New Data Assimilation: We can also use DA
to improve observations and model

OBSERVATIONS 6 hr forecast ]

*

ANALYSIS




The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal
L

Combine optimally observations and model
forecasts
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Combine optimally observations and model
forecasts (mostly done!) ©
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The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal, namely
L

Combine optimally observations and model
forecasts

 We should also use DA to:
Improve the observations: PQC, nice results
Improve the model: Use analysis increments
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The simplicity and power of EnKF should encourage the use of
DA for improvements beyond its main goal

Combine optimally observations and model
forecasts
 We should also use DA to:
Improve the observations
Improve the model
* Also, do more truly coupled DA:

Example: The ocean and the atmosphere are
coupled: obviously the best DA should be coupled

e Earth system models used by IPCC have many sub-
models, but they don’t include the Human System,
which totally dominates the Earth system.

We should do DA of the coupled Earth System-
Human System



The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal
L

Combine optimally observations and model
forecasts
 We should also use DA to:
Improve the observations
Improve the model
* Also, do more truly coupled DA:

Example: The ocean and the atmosphere are
coupled: obviously the best DA should be coupled



LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot
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LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot

All observations (purple
diamonds) within the local
region are assimilated

The LETKF algorithm can be described in a single slide!
12



Local Ensemble Transform Kalman Filter (LETKF)

Globally: ;
X' =M (x" )
Forecast step: .k AN
Analysis step: construct ¥’ — [xf _x? ... |x/}( _ i/’];

y, =&)Y =y -y |y -¥]

Locally: Choose for each grid point the observations to be used,
and compute the local analysis error covariance and
perturbations in ensemble space:

P =[(K-)I+Y'R'Y| ;W' =[(K - 1)P]"

Analysis mean in ensemble space:W* = P‘'Y "R (y° - ")
and add tow“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
X’ = XﬁW" + X Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are
analysis weights W’ and perturbation analysis matrices of
weights W°. These weights multiply the ensemble forecasts. .,



Hybrids between Var and EnKF

So far Covariance-Hybrids have been used, combining an
existing Var system with an ensemble that provides the flow
dependence of the background error covariance.

Penny (2014) developed a Gain-Hybrid, very simple to
Implement, that starts with the LETKF analysis and adds a
Var analysis. ECMWEF tested it with excellent results (Hamrud
et al. 2014, TM733).

The LETKF analysis is used as first guess by the Var, and the
analysis is O/Var+(1- &¢)LETKF + (LETKF perturbs).

Penny tested it with the Lorenz 96 model: The analysis error
is plotted as a function of the number of ensemble members
(2 to 40) and the number of observations (1 to 40).

Student Matthew Wespetal tested it on the SPEEDY global
atmospheric model with the LETKF coupled with 3D-Var.



Observation count (1)

Gain-Hybrid with a simple local 3D-Var (Penny,
MWR2014) applied to the Lorenz 96 model

Standard LETKF

Mean absolute analysis error for standard LETKF

The total model dimension
Is K=40

The LETKF is extremely
accurate as long as
k>7, number of obs>7.

10 15 20 25 30 35 40
Ensemble size (k)

This is the corner where we
are in ocean EnKF: too few
obs, too few ensembles



Gain-Hybrid with a simple local 3D-Var (Penny,
MWR2014) applied to the Lorenz 96 model

Standard LETKF Add a simple 3D-Var to LETKF
Mean absolute analysis error for standard LETKF Mean absolute analysis error for Hybrid—-LETKF v1 alpha=0.5
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The hybrid LETKF- 3D-Var is more robust for few ensemble
members and few observations, as in the ocean.

ECMWF implemented Penny’s Gain-Hybrid with excellent
results, even slightly better than their operational EDA



LETKF and Hybrid on the SPEEDY model
Hybrid vs LETKF (20 members) RMSE

- satellite + rawinsondes rawinsondes only
- alpha=0.5 alpha =0.5

RMSE U ) RMSE U

ybrid 7 ybrid
LETKF LETKF

RMSE
RMSE

As expected, for the data rich case, the hybrid converges faster
but becomes slightly worse than the LETKF.

For the data poor case, the hybrid is better than the pure LETKF.

(from Matthew Wespetal).



Traditional approaches to coupling

* In a typical coupling scheme for an ocean-atmosphere model,
the ocean model passes SST to the atmosphere, while the
atmosphere passes back heat flux components, freshwater flux,
and horizontal momentum fluxes. (Neelin, Latif & Jin, 1994)

* |n standard data assimilation, atmospheric observations are
assimilated only by the atmospheric model, and ocean
observations are assimilated only by the ocean. We call this
weak (or standard) coupling.

« SST in the ocean model is frequently nudged from “Reynolds
(Ol) SSTs”, not assimilated from observations.

« SSH and Salinity may not be even be used.

* The data assimilation windows for the ocean are much longer
than for the atmosphere.

« We introduce the concept of strongly coupled data assimilation.




How to do coupled ocean-atmosphere data
assimilation?

Should we do coupled data assimilation?
Yes! e.g., see Tamara Singleton thesis

Current approaches assimilate separately the ocean
and the atmosphere, and then couple the models
(weak coupling)

We propose strong coupling: the ocean sees the
atmospheric observations, and the atmosphere
sees the ocean observations (Sluka, Penny, Miyoshi)



Data Assimilation: STANDARD (WEAK) COUPLING

S. Zhang et al.: GFDL Coupled Ocean-Atm EnKF
GHG + NA fadiative forcing

4 ADA Component
\ 4

Atmosphere Atmospheric model
assimilates only

u. vo. to. g° g0
atm. obs.! ’l/;‘% ODA Component

u, v, t, g, ps
T

Sea-Ice
model




Our strongly coupled LETKF assimilation

Observations

Ensemble of Coupled Fored

amble of Coupled Analyses

Coupled Model (==

V., T

Vgr I g \ observation
localization

Ocean sees atm. obs.
Atm. sees ocean obs

Thanks to
Miyoshi, Penny



Impact of strong coupling of the ocean-
atmosphere LETKF (Travis Sluka)

e SPEEDY-NEMO coupled model. Perfect model OSSE.
* Standard (weak) coupling as a control

e Test strong coupling: the ocean sees the atmospheric
observations and the atmosphere sees the ocean

observations
Experiments: 1) Only atmos. obs.

* CONTROL: Weakly coupled data assimilation: Only the
atmosphere assimilates atmos. observations.

e Strongly coupled DA: ocean also assimilates
atmospheric observations



Results: Red means STRONG DA is better!

S T Sluka et al., in preparation

e With Strongly
Coupled DA, the
errors in temperature
and salinity decrease

° oen S (Pacific) psuy 9 e [f:] by about 50%.
250 1 il * The improvements
% %soo 1.0 reach the lower
® % . levels.
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Results: Red means STRONG DA is better!

Sluka et al., in preparation

In turn, with Strongly Coupled DA, the ocean improved by assimilating
atmospheric observations improves the atmosphere!

0.25

0.00




Improve the observations: Ensemble Forecast

Sensitivity to Observations and Proactive QC

I i—(3rmh —
* Kalnay et al. (2012) derived EFSO.

e Otaetal.(2013) tested 24hr forecasts and showed EFSO
could be used to identify bad obs.

* D. Hotta (2014): EFSO can be used after only 6 hours, so
that the bad obs. can be withdrawn and collected with
useful metadata so they can be improved.

* We call this Proactive QC, much stronger than QC.
e Hotta also showed EFSO can be used to tune R

e Tse-Chun Chen (2015) tested impact of EFSO/PQC over 5
day forecasts: NEW RESULTS!



FT=06 hr.
2012020618

Total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr
[60°N,40°E,70°E]

Estimated Error Reduction: 39.06%

lllllllllllllllllll
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Hotta (2014)

Feb. 18 O6UTC, near the North Pole
(Ota et al. 2013 case). Bad obs: MODIS WIND
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FT=24 hr.
2012020618

Total Obs. Impact by obs. type
Moist Energy norm, EFT=24hr
[60°N,40°E,70°E]

Estimated Error Reduction: 66.04%
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Can identify the bad observations after only 6 hours!



Improve observations:
Proactive QC: Find and delete the obs that make

the 6hr forecast worse usinﬁ EFSO

Obs Impacts Type=259, EFT=06hr
Dr. Daisuke Hotta (2014): T ' '
EFSO is able to find whether Sese
each observation improves
(blue) or makes the 6hr
forecast worse (red)

40E . S0C - — o0l
Drop,all MODIS.wipds  Drop,only-MODIS winds |mpact of 6hr PQC on 24hr fcst
with'negative impact

e 4% pQC with metadata can be used

o= | to improve the algorithm!
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Implementation to the real operational system
(2) can we afford to do analysis twice?

ldea: Use approximated analysis rather than doing
analysis again:
— Using the approximation to Kalman gain:

1 ]‘ awzsa —
K =~ ﬁnggf‘“HTR—1 ~ ﬁXOYOTR1

the change in analysis by the denial of observations can be
approximated by:

1
—a,deny _ —ob,deny ~ )(a‘ 'raT —1 ¢—ob,deny
xa” en xa' ~ I‘ §y0 b) €en — —— R 5y

— As inexpensive as EFSO.
- No need to repeat analysis
- Can minimize the time delay

Can be used to tune R! (Hotta, 2014)
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Ensemble Forecast Sensitivity to Error Covariances
Hotta (2014)

* Daescu and Langland (2013, QJRMS)
proposed an adjoint-based formulation of forecast

sensitivity to B and R matrix.

e Daisuke Hotta formulated its ensemble equivalent for R
using EFSO by Kalnay et al. (2012) :

J

Oe Oe 1 _ a — oa
lﬁ—R]zg N yi G TR 1 {R 1Y0Xf‘]€)C (etlo +et|_6)L R~ 0y™]

where z is an "intermediate analysis increment” in observation space



R-sensitivity results from GFS / GSI-LETKF hybrid

Averaged R-sensitivity
Moist Energy norm, EFT=6hr

Averaged R-sensitivity
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MODIS wind
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Moist Energ_y norm, EFT=24hr
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Positive value: error increases as s, increases = should decrease s_?

Aircraft, Radiosonde and AMSU-A: large positive sensitivity

MODIS wind : negative sensitivity

— Tuning experiment:
* Aircraft, Radiosonde and AMSU-A: scale s,2 by 0.9
* MODIS wind: scale s,2 by 1.1



Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type  Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr | Moist Energy norm, EFT=24hr
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Aircraft, Radiosonde and AMSU-A: significant improvement of EFSO-
impact

MODIS wind : insignificant difference in EFSO

|IASI: Significant improvement in EFSO although its error covariance is
untouched!



Current testing of PQC on JCSDA S4
Tse-Chun Chen

. Be!ore operational testing, we neea to sHow tHat:

— Denying flawed observations improves the forecasts.

— Denying flawed observations works in a cycled way (we
tested case by case so far).

— The EFSO approximation (constant K) can be used to
replace the full analysis without the flawed observations
(much faster).

— We can use the 6hr early forecast to check the final
analysis.

* Prof. Daryl Kleist has kindly offered to help test PQC
operationally once we have good results.

* So, let’s look at the results: We tested 9 cases of withdrawing
flawed observations, re-computing the analysis and
performing 5-day forecasts with and without the flawed
observations.



Results: we measure the % change in forecast error

(Moist Total Energy) when withdrawing flawed obs.
I aonnm—h5

Case 2012020618 MTE REL IMP (%)

2 [ [

1 BEST CASE

0 Flawed obs in both
NH and SH

1k -

Al | 7% reduction of
error in both NH

31 - and SH! (“Skill-
dropouts”)

-4k -

sk | Random changes
increase initial

6k - errors in the
tropics, but the

r | tropics also

8 : : : : improve with time.

0 24 48 72 96 120

Forecast Hour



All 9 cases: impact in NH extratropics

—a— 2012011200
—a— 2012011518

2012011806
—a— 2012011818
—a-— 2012012618
—a-— 2012012818
—a— 2012020218
—a— 2012020512
—a— 2012020618

NH MTE REL IMP (%)
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ALL CASES NH

Reduction of error
is large, increase of
error is small.

When PQC is done
in the other
hemisphere, the
forecast skill
changes little.



All 9 cases: impact in SH extratropics

SH MTE REL IMP (%)

ALL CASES SH

Reduction of error
is large, increase of
error is small

When PQC is done
in the other
hemisphere, the
forecast skill
changes little.
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All 9 cases: impact in Tropics

TR MTE REL IMP (%)

2 ' ' ALL CASES TROPICS
1} -
No flawed
0 observations were
4l withdrawn in the
tropics.
2k -

The initial dropping
-3 T of flawed obs in NH
and SH extratropics
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All 9 cases: average % reduction of error

1 Composite MTE REL IMP (%) AVERAGE OF ALL
- - ' ' CASES
—sa—NH
—6—SH
0.5 el The global %
\ reduction of error
0 improves with
forecast length.
-0.5 | -
The dropping of
11 . flawed obs in NH
and SH extratropics
15} - introduces an initial
noise in the tropics.
2k -
With time, even the
2.5} - tropics improve due
to NH and SH
-3 ! ! ' I elimination of
0 24 48 72 96 120

Forecast Hour flawed obs.



Implications for weather and climate prediction
L

* The results of PQC are very encouraging indeed!

* The improvements should accumulate on the GDAS when
flawed observations are withdrawn online, not case by
case.

* But we have to test this!

* Asimilar approach could be applied to the CFS!

 Our method relies in having many observations available
to verify the short range (6 hour) forecast.

* A similar approach could be applied to short range (e.g.,
one month) ENSO forecasts: find the obs that make the
one-month forecast worse and withdraw them.



Two weeks ago: Reanalysis Workshop

* The worst problem in reanalysis are the jumps
that take place when new observing systems
are used.

* They are due to the use of an imperfect model
with model bias.

* Dr.Yan Zhou found the optimal solution to
minimize reanalysis jumps using the bias
correction of Danforth-Kalnay-Miyoshi (2007)



Why do we get reanalysis jumps? Model bias!

, s S + Observations
l Model 1 /
\ /

S o P Climatological bias

No observations. The
model climatology has a
large bias.

Some observations added,
e.g. pre-satellite era. The
bias decreases abruptly,
with a jump.

Many observations, e.g.

Imperfect .
model satellite era. Each new
observing system reduces
T the bias with a jump
l Perfect model without bias.
Perfect No jumps when even more
model observations are added

A schematic of “climate jumps” associated with observing system changes

* The climatological bias between the forecast model and the nature decreases
with a jump when a new observing system was assimilated.

* The purpose of Yan Zhou’s dissertation is to find a solution to minimize the
“climate jumps” associated with observing system changes.

Yan Zhou, AOSC UMD Ph.D defense on December 8t", 2014



Example: MERRA global mean precipitation

Global mean precipitation

MERRA GPCP
NCEP~-CFSR NCEP2 CMAP
ERA Interim ERA-40
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................................
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Global monthly mean precipitation (mm/day) time series for MERRA (green),
several other reanalyses, and GPCP and CMAP (black) (Chen et al., 2012)

* Jumps in the MERRA global mean precipitation time series appeared
simultaneously with introducing or ceasing different types of satellite
observations, like SSM/I and ATOVS (red arrows)

Yan Zhou, AOSC UMD Ph.D defense on December 8t", 2014



How can we estimate and correct model bias?

 The best current estimate of nature is the analysis

* The First Guess (6hr forecast) contains the initial
forecast errors (before they grow nonlinearly)

* Analysis - First Guess = Analysis Increments (Al) = -
Initial (linear) model errors

 Time average of Al is the best estimate of the error
growth due to model bias in 6 hr

 Danforth, Kalnay and Miyoshi (DKM-2007) estimated
the 6hr errors of the SPEEDY model.

e Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast
(started from reanalysis R1) minus the reanalysis.



DKM-2007 results

e Estimated the monthly mean 6hr forecast bias

* Corrected the model by adding (—bias/6hr) to each
variable time derivative, at each grid point.

Results

* The bias correction after 3 or 5 days was the same as
the best a posteriori bias correction.

e But the random errors were smaller.

e The dominant EOFs of the 6hr debiased forecast errors
were the errors in the diurnal cycle.

* |t was possible to estimate the systematic errors for
anomalies (e.g., ENSO, lows over land or over ocean)



The model corrected online did at least as well
as the model statistically corrected off-line
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And the random errors were significantly smaller!

Original Model Online Correction

Jan 1986-1990, uwnd [m/s] 1dy Random Error  Jan 1986-1990, uwnd [m/s] 1dy Improvement
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How to find the diurnal cycle model errors using EOFs
from a Reanalysis
(Danforth et al., 2007)

Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast
(started from reanalysis) minus the reanalysis.

Then they computed the EOFs of the anomaly in
the model error, and found two dominant EOFs
representing the model error in representing the
diurnal cycle:
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How to find the state dependent errors using
coupled SVD’s
(Danforth et al., 2007)

Three leading coupled SVD’s of the covariance of 6 hr forecast
errors and corresponding model state anomaly for T at
sigma=0.95. Contours: state anomaly, colors: heterogeneous
correlation with forecast errors.

Over land, the corrections suggest the anomalous temperatures
are too strong, and over ocean too weak and too far to the west.

This can be extended to improving forecasts using coupled SVD’s
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Implications for improving the model bias
I amanemmmeemem—eees

e The DKM2007 method gave very good results with the SPEEDY
model, using R1 as an approximation of the true atmosphere.

* The bias/6hr was added to the SPEEDY time derivatives (u,v,T,p,).

* This corrected the bias, getting similar or better results than an a
posteriori bias correction! In addition, random forecast errors were
also reduced.

* |t was also used to improve the diurnal cycle and to find the state
dependent systematic errors (e.g., during an El Nifo).

* It can be tried on the GFS (or the CFS!) taking advantage of the
Analysis Increments, i.e., the difference between the Analysis and
the Forecast.

e Dr. Fanglin Yang very kindly provided us (Kriti B., Jim Carton and me)
with 2014 and 2013 Analyses and forecasts. Kriti got these results
yesterday! ©



First results: 2014 Analyses, Forecasts and Als

S u rfa ce P ressure Surface Pressure January(above) and July (below) monthly mean (hPa) Ja nua ry

Analysis Forecast

720 810 450 540 630 720 810

Analysis Forecast

P.is too low over continents, too high over oceans in both winter and summer.



First results: 2014 Analyses, Forecasts and Als

S u rfa ce Te m pe ratu re Temperature January(above) and July (below) monthly mean(K) at Omb Ja nua ry

Analysis Forecast Analy5|s Increament

220 235 250 265 280 295 310 220 235 250 265 280 295 310 -09 -06 -03 0.0 0.3 0.6 0.9

Analysis Forecast

i =

220 235 250 265 280 295 310 -09 -06 -03 0.0 0.3 0.6 0.9

T, is too low over continents in the summer, too high in the winter.



First results: 2014 Analyses, Forecasts and Als

S u rfa ce S peC|ﬁ C H um |d itySpecific Humidity January(above) and July (below) monthly mean(g/kg) at Omb Ja nua ry

Analysis Forecast

—-0.045 -0.030 -0.015 0.000 0.015

July

0.030 0.045

-0.045 -0.030 -0.015 0.000 0.015 0.030 0.045

Q. is a noisy mess!



First results: 2014 Analyses, Forecasts and Als

SU I‘face M erld |Ona| WI nd V-wind January(above) and July (below) monthly mean(m/s) at Omb Ja nua ry

Analysis Forecast Analysis Increament
= — <=3 =~ & | wgpe='

i

-135 -090 -045 000 045 0.90 135

JU Iy ‘ Analysis Increament '

- | _—— S
<o« 8 i e
< o 0 2 Y N
g G SR A
3 a
i

'

-1.35 -0.90 -0.45 0.00 045  0.90 135

At the Equator there are bands of excessive divergence and convergence North and South of
the Equator



First results: 2014 Analyses, Forecasts and Als
I mnmem—m—

200 m b M e rl d |O n a I Wl n d V-wind January(above) and July (below) monthly mean(m/s) at 200mb Ja n u a ry
Increament

Analysis Forecast Analysis
y B e, sygme~ 00 = - =

oL

-135 -0.90 -045 000 045 0.0 135

July

-1.35 -0.90 -0.45 0.00 045  0.90 1.35

At 200mb the bands of divergence seem too weak.



First results: 2014 Analyses, Forecasts and Als
I mnmem—m—

200 m b te m pe ratu re Temperature January(above) and July (below) monthly mean(K) at 200mb Ja nua ry

Analysis Forecast

-0.9

July

196 202 208 214 220 226 232 196 202 208 214 220 226 232 -09 -06 -03 0.0 0.3 0.6 0.9

200mb: Poles are too cold in winter, too warm in summer.
Mid-lat continents are too warm in winter.



How should we proceed to reduce model bias?

* Check the robustness of the monthly average Al (2014 vs. 2013, July
vs. August), earlier years.

* Do they change significantly with model resolution?, model physics?

* Try doing seasonal filtering with 2-3 Fourier components, as Yan
Zhou did.

* Find why moisture increments are so noisy. Maybe discard them?

* Perform exploratory low resolution (T254) experiments correcting
the perceived model biases by adding Al/6hr to each variable
(except for Q?)

* Explore the diurnal cycle of the Al (error correction). Test if the
diurnal cycle errors can be reduced.



Improving non-Gaussian Observations

Effective assimilation of Precipitation
Guo-Yuan Lien, E. Kalnay and T. Miyoshi (Tellus 2013),
Lien (2014), Lien et al. (2015a, 2015b)

® Assimilation of precipitation has generally failed to improve
forecasts beyond a day.

e A new approach deals with non-Gaussianity, and assimilation of
both zero and non-zero precipitation.

e Rather than changing moisture to force the model to rain as
observed, the LETKF changes the potential vorticity.

e The model now “remembers” the assimilation, so that
medium range forecasts are improved.

58



How to transform precipitation y to a Gaussian y,,_,..¢

Start with pdf of
y=rain at every grid
point.

>

O 06 -
“No rain” is like a T
delta function that we o
cannot transform.

We assign all “no
rain” to the median of
the no rain CDF.

We found this works .
as well as more =
complicated >
procedures. g

Q
It allows to assimilate | )
both rain and no rain. 0 +———————————— e —

0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3
y (mm/6h) Viae = G [F(y)] (unit: 0)59

&' () =\2er " (2x-1)



(a) Analysis (b) Forecast

Raobs
PP_TR_10mR
PP_TR_10mR_qOnly

uuuuuuuuuuuuuuuuuuuuu

1AN 6 11 16 21 26 FEB MAR APRl MAY JUN JUL AUG SEP OCT NOV DEC JgAN3 0 24 48 72 96 120

1982 19 ! )
&aUSS|an, 10 members rain, Forecast hour (h)
20% error, all variables

* Main result: with at least 10 ensemble members raining in
order to assimilate an obs, updating all variables (including
vorticity), with Gaussian transform, and rather accurate
observations (20% errors), the analyses and forecasts are
much improved!

* Updating only Q is much less effective.

* The 5-day forecasts maintain the advantage! 60




REAL OBSERVATIONS (TMPA)

Example of Gaussian precipitation transformation
TMPA 6h PeC|p (mm) [00Z01JUN2006]

Co~w——

SON'""T ............... ...... ........ ‘_-, .’ ...... ‘ :. 2. ,
Orl_glnal ol WM L g NG i TR
variable RN Ry
sosl N\ f o T AN o W " weh
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0 60E 0
0.06 0.2 0.5
TMPA Transformed 6h Precip [00Z01JUN2006]
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Assimilating TRMM rain with a GFS T62 model

verified against ERA Interim (RMSE)

U at 500 hPa

24hr forecast RMSE

Global

Comparing RMSE of

Control (RAOBS) (no assim of pp)

Assim. with No Transform =
Assim. with LOG Transform
Assim. w Gaussian Transform cz
Assim. w Gaussian Transform bz

T

Results

No Transform is the worst

LOG Transform~RAOB (no pp assim) &
GT are the best
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Guo-Yuan Lien (2014): Efficient assimilation of precipitation

EFSO average impact of rain obs.

(a) Average obs |mpact (10-4J/kg) [MTE, EFT= 6h] AII obs

120W 60w

Assimilating only the precip This also shows that EFSO
obs identified by EFSO as can be used to optimize the
good improved the results! DA of new instruments

efficiently!



One-month time series: Analysis U (m/s) at 500 hPa

Guo-Yuan Lien (2014)
RMSE [GL/anal]: U (m/s) at 500hPa
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| ] This also shows that
Assimilating the TRMM precip

obs identified by EFSO as good Raobs EFS.O (.:an be used to
improves the results. GTbz optimize the DA of new

GTbz_EFSOpick instruments efficiently!




Improve the models: Parameter estimation

and estimation of bias using DA
I i—(3rmh —

* Model tuning on long time scales should be done with
EnKF parameter estimation.

 Kang et al., JGR, 2011, 2012 showed that evolving
surface carbon fluxes can be estimated accurately at the
model grid resolution from simulated atmospheric CO2
observations (OCO-2) as evolving parameters.

* Another approach is the use of analysis increments to
estimate model bias (Greybush et al., 2012, Mars) and
even state-dependent model bias (e.g., El Nino bias), as
in Danforth et al. 2007.



Surface carbon fluxes CF from atmospheric
assimilation of meteorological variables

and CO2 obtained as evolving parameters
(OSSE). Kang et al., JGR, 2011, 2012
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OSSE
Results
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60N
30N

QY
305 -

60S A

60N
30N

TR
30S -

60S -

T T T
1o9nC 1on 1 ‘1(\\"

-10-9-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8 9 10

0 60E 120E 180 120W 60W

60N Qe

30N S
£Q T
305 1

60S -

60N
30N

QP
305 1

60S -

0 60E

120E 180 120W 60W

We succeeded in estimating time-evolving CF at model-grid scale
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SUMMARY

* Future applications of EnKF-based data
assimilation for improving both weather and
climate prediction

— 1) Combine model forecast and observations to
create the best initial conditions v/

— 2) Improve observations v

— 3) Improve models (both by parameter estimation v/
and by using the analysis increments to correct the
model V)

— 4) Do strongly coupled data assimilation v/



